Home
Class 12
MATHS
If a and b are noncollinear unit vectors...

If a and b are noncollinear unit vectors and |a + b| `= sqrt(3)`, then (2a + 5b). (3a - b) =

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a and vec b are non-collinear unit vectors and |vec a+vec b|=sqrt(3) then (2vec a+5vec b)*(3vec a-vec b)=

If vec a and vec b are two non-collinear unit vectors such that | vec a+ vec b|=sqrt(3), find (2 vec a-5 vec b). (3 vec a+ vec b) .

If vec a and vec b are two non-collinear unit vectors such that |vec a+vec b|=sqrt(3), find (2vec a-5vec b)*(3vec a+vec b)

If bara,barb " are noncollinear unit vectors, " abs(bara+barb) =sqrt 3 " then " (2bara+5barb).(3bara-barb) =

If vec a\ a n d\ vec b are two non collinear unit vectors such that | vec a+ vec b|=sqrt(3),\ find \ (2 vec a-5 vec b). (3 vec a+ vec b)

If a, b are noncollinear vectors and A = (x + 4y) a + (2x + y + 1)b, B = (y - 2x +2) a + (2x - 3y - 1) b and 3A = 2B, then (x, y) =

If vec a,vec b are two unit vectors such that |vec a+vec b|=2sqrt(3) ,then the angle b

If a and b are two unit vectors such that a + b is also a unit vector, then |a-b|^(2)=

bar(a) and bar(b) are unit vectors. |bar(a)+bar(b)|=sqrt(3) then the value of (3bar(a)-4bar(b)).(2bar(a)+5bar(b)) = ……………