Home
Class 12
MATHS
The value of the integral I=int(1)^(2)t^...

The value of the integral `I=int_(1)^(2)t^([{t}]+t)(1+ln t)dt` is equal to (`[.] and {.}` denotes the greatest integer and fractional part function respectively)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1){4t^(3)(1+t)^(8)+8t^(4)(1+t)^(7)}dt is

int_(1)^(a)(ln t)/(t)dt

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

int_0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer function and x in R^+ , is equal to

int_0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer function and x in R^+ , is equal to

int_0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer function and x in R^+ , is equal to

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

The value of int_(-pi//2)^(pi//2)(dx)/([x] + [ sin x] +4) , where [t] denotes the greatest integer than or equal to t , is