Home
Class 12
MATHS
If I(n)=int(0)^(npi)max(|sinx|,|sin^(-1)...

If `I_(n)=int_(0)^(npi)max(|sinx|,|sin^(-1)(sinx)|)dx`, the `I_(2)+I_(4)` has the value `(lambdapi^(2))/(2)`, where `lambda` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

Let I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx , then I_(2) is equal to

Let I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx , then I_(2) is equal to

If I_(n)=int(sinnx)/(sinx)dx, then I_(5)-I_(3)=

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

I=int_0^(2pi) e^(sin^2x+sinx+1)dx then

Let I_(1) = int_a^(pi-a) xf (sin x) dx, I_(2) = int_a^(pi-a) f(sinx) dx then I_(2) is equal to

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is