Home
Class 12
MATHS
x=a cos theta, y=a sin theta is a parame...

`x=a cos theta, y=a sin theta` is a parametric form of :
(A) Parabola
(B) Hyperbola
(C) Ellipse
(D) Circle

Promotional Banner

Similar Questions

Explore conceptually related problems

A point P(x,y) moves in the xy-plane such that x=a cos^(2)theta and y=2a sin theta, where theta is a parameter.The locus of the point P is alan circle (b) allipse unbounded parabola (d) part of the parabola

Statement 1 : (a cos^2 theta, 2a cos theta) is the parametric point of parabola y^2 = 4ax . Statement 2: For all value of theta, -1 le cos theta le1

If a+b+3c=0, c != 0 and p and q be the number of real roots of the equation ax^2 + bx + c = 0 belonging to the set (0, 1) and not belonging to set (0, 1) respectively, then locus of the point of intersection of lines x cos theta + y sin theta = p and x sin theta - y cos theta = q , where theta is a parameter is : (A) a circle of radius sqrt(2) (B) a straight line (C) a parabola (D) a circle of radius 2

foci of the ellipse x = 4 cos theta , y = 3 sin theta are

a cos theta+b sin theta+c=0a cos theta+b_(1)sin theta+c_(1)=0

If x=a cos^(2)theta,y=b sin^(2)theta find (d^2y)/dx^2

If x=a cos theta + b sin theta and y=a sin theta - b cos theta. then a ^(2) +b^(2) is equal to