Home
Class 12
MATHS
Can anyone prove int(-pi/2)^(pi/2)(log...

Can anyone prove `int_(-pi/2)^(pi/2)(log(1 +bsinx)/sinx)dx` = `pisin^-1b`, where `|b|`<1.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

Evaluate int_(-pi/2)^(pi/2) log((2-sinx)/(2+sinx))dx

int_(-pi/4)^(pi/4) log((2 - sinx)/(2 + sinx)) dx=

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate int_(-pi//4)^(pi//4)log(sinx+cosx)dx .

Evaluate int_(-pi/4)^(pi/4) log((2 - sinx)/(2 + sinx)) dx

Evaluate: int_(pi//4)^(pi//4)log(sinx+cosx)dx