Home
Class 12
MATHS
If A , B , C are angles in a triangle ,...

If `A , B , C ` are angles in a triangle , then prove that ` sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

Theorem 4:sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C