Home
Class 12
MATHS
let A be the greatest value of the funct...

let A be the greatest value of the function `f(x)=log _(x) [x],` (where `[.]` denotes gratest integer function) and B be the least value of the function `g (x) = |sin x | +|cos x| ,` then :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be the greatest value of the function f(x)=log_(x)[x], (where) denotes greatest integer function) and B be the least value of the function g(x)=|sin x|+|cos x|, then:

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then