Home
Class 12
MATHS
A function y=f(x) satisfies f"(x)= -1/x^...

A function `y=f(x)` satisfies `f"(x)= -1/x^2 - pi^2 sin(pix) ; f'(2) = pi+1/2` and f(1)=0. The value of `f(1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

A function y=f(x) satisfies f''(x)=-(1)/(x^(2))-pi^(2)sin(pi x)f'(2)=pi+(1)/(2) and f(1)=0 then value of f((1)/(2)) is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If the function y=f(x) satisfies f'(x)+f(x)cot x-2cos x=0,f((pi)/(2))=1 then f((pi)/(3)) is equal to

If a function f satisfies f (f(x))=x+1 for all real values of x and if f(0) = 1/2 then f(1) is equal to

A function y-f (x) satisfies the differential equation f (x) sin 2x - cos x+(1+ sin ^(2)x) f'(x) =0 with f (0) =0. The value of f ((pi)/(6)) equals to :

A function y=f(x) satisfies (x+1)f'(x)-2(x^(2)+x)f(x)=((e^(x))^(2))/((x+1)),AA x>1 If f(0)=5, then f(x) is

A function y=f(x) satisfies (x+1)f^(')(x)-2(x^(2)+x)f(x) = e^(x^(2))/(x+1), Aax gt -1 . If f(0)=5 , then f(x) is

If a function f satisfies f{f (x)}=x+1 for all real values of x and if f(0)=1/2 then f(1) is equal to a) 1/2 b)1 c) 3/2 d)2