Home
Class 11
MATHS
Equation of major axis of the ellipse ((...

Equation of major axis of the ellipse `((x-h)^(2))/(a^(2))+((y-k)^(2))/(b^(2))=1`(a

Promotional Banner

Similar Questions

Explore conceptually related problems

End points of the major axis of the ellipse ((x-h)^(2))/(a^(2))+((y-k)^(2))/(b^(2))=1(a

Centre of the ellipse ((x-h)^(2))/(a^(2))+((y-k)^(2))/(b^(2))=1(a

Equation of the directrices of the ellipse ((x-h)^(2))/(a^(2))+((y-k)^(2))/(b^(1))=1 (a>b)

If the length of the major axis of the ellipse ((x^(2))/(a^(2)))+((y^(2))/(b^(2)))=1 is three times the length of minor axis, its accentricity is

If the circle whose diameter is the major axis of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a gt b gt 0) meets the minor axis at point P and the orthocentre of DeltaPF_(1)F_(2) lies on the ellipse, where F_(1) and F_(2) are foci of the ellipse, then the square of the eccentricity of the ellipse is

The equation of the major axis of the ellipse (x-1)^(2)/(9)+(y-6)^(2)/(4)=1 is

The coordinates of the foci of an ellipse ((x-h)^(2))/(a^(2))+((y-k)^(2))/(b^(2))=1 are given by (a gt b)

The length ofthe normal (terminated by the major axis) at a point of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is