Home
Class 11
MATHS
lim(x rarr pi/4)(tan^3x-tanx)/(cos(x+pi/...

`lim_(x rarr pi/4)(tan^3x-tanx)/(cos(x+pi/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr pi/4)(tan^(3)x-tan x)/(cos(x+(pi)/(4))) is 8 b.4 c.-8d .-2

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

lim_(x to pi/4)(tan^3x-tanx)/(cos(pi/4+x))=alpha and lim_(x to 0)(cosx)^cotx=beta .If alpha and beta are the roots of equation ax^2+bx-4 then ordered pair (a,b) is

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

The value of lim_(x->pi/4)(tan^3x-t a n x)/(cos(x+pi/4)) is 8 b. -4 c. -8 d. -2

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is