Home
Class 11
MATHS
The equation x = (e ^(t) + e ^(-t))/(2),...

The equation `x = (e ^(t) + e ^(-t))/(2), y = (e ^(t) -e^(-t))/(2), t in R,` represents

Promotional Banner

Similar Questions

Explore conceptually related problems

The equations x=(e^t+e^(-t))/2,y=(e^(t)-e^(-t))/2, t inR represent :

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

Find (dy)/(dx), when x=(e^(t)+e^(-t))/(2) and y=(e^(t)-e^(-t))/(2)

Find the eccentricity of the hyperbola given by equations x=(e^(i+e^(-1)))/(2) and y=(e^(t)-e^(-1))/(3),t in R

Assertion (A): The locus of the point ((e^(2t)+e^(-2t))/(2), (e^(2t)-e^(-2t))/(2)) when 't' is a parameter represents a rectangular hyperbola. Reason (R ) : The eccentricity of a rectangular hyperbola is 2.

Assertion (A): The locus of the point ((e^(2t)+e^(-2t))/(2), (e^(2t)-e^(-2t))/(2)) when 't' is a parameter represents a rectangular hyperbola. Reason (R ) : The eccentricity of a rectangular hyperbola is 2.

If x=(e^t+e^(-t))/2 and y=(e^t-e^(-t))/2 , then dy/dx=

Find (dy)/(dx),quad when x=(e^(t)+e^(-t))/(2) and y(e^(t)-e^(-t))/(2)