Home
Class 11
MATHS
lim(x rarr 0)(2^x-1)/(sqrt(1+x)-1)=...

`lim_(x rarr 0)(2^x-1)/(sqrt(1+x)-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(2^(x)-1)/(sqrt(1+x)-1)

Evaluate: lim_(x rarr0)(2^(x)-1)/(sqrt(1+x)-1)

lim_(x rarr0)(3^(x)-1)/(sqrt(1+x)-1)

Show that lim_(x rarr0)(e^(x)-1)/(sqrt(1+x)-1)=2

lim_(x rarr 0)((3^(x)-1)/(sqrt(1+x)-1))

lim_(x rarr0) (2x)/(sqrt(1+x)-1)

lim_(x rarr 0) (a^(x)-1)/(sqrt(1+x) -1) =

lim_(x rarr0)(3^(x)-1)/(sqrt(x+1)-1) is equal to

lim_(x rarr 0) (a^(x)-1)/(sqrt(1+x) - 1) is :