Home
Class 12
MATHS
If f(x)= a^({a^(|x|)sgn x }),g(x)=a^([a^...

If `f(x)= a^({a^(|x|)sgn x }),g(x)=a^([a^(|x|)sgn x]` for ` a gt 1, a!=1` and ` x in R`, where `{**}` & `[**]` denote the fractional part and integral part functions respectively, then which of the following statements holds good for the function `h(x)`, where `(ln a) h(x) = (ln f(x) + ln g(x))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([e^(|x|sgnx)]),x in R , where { } and [ ] denote the fractional and integral part functions, respectively. Also, h(x)=log(f(x))+log(g(x)) . Then for real x , h(x) is

Let f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([e^(|x|sgnx)]),x in R , where { } and [ ] denote the fractional and integral part functions, respectively. Also, h(x)=ln(f(x))+ln(g(x)) . Then for real x , h(x) is

Let f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([e^(|x|sgnx)]),x in R , where { } and [ ] denote the fractional and integral part functions, respectively. Also, h(x)=log(f(x))+log(g(x)) . Then for real x , h(x) is

Let f(x)=e^(e^(|x|sgnx))a n dg(x)=e^(e^(|x|sgnx)),x in R , where { } and [ ] denote the fractional and integral part functions, respectively. Also, h(x)=log(f(x))+log(g(x))dot Then for real x , h(x) is (a)an odd function (b)an even function (c)neither an odd nor an even function (d)both odd and even function

Let f(x)=e^(e^(|x|sgnx))a n dg(x)=e^(e^(|x|sgnx)),x in R , where { } and [ ] denote the fractional and integral part functions, respectively. Also, h(x)=log(f(x))+log(g(x))dot Then for real x , h(x) is (a)an odd function (b)an even function (c)neither an odd nor an even function (d)both odd and even function

The range of function f(x)=log_(x)([x]), where [.] and {.} denotes greatest integer and fractional part function respectively

The domain of function f(x)=ln(ln((x)/({x}))) is (where { ) denotes the fractional part function)

If f (x) =[ln (x)/(e)] +[ln (e)/(x)], where [.] denotes greatest interger function, the which of the following are ture ?

If f (x) =[ln (x)/(e) +[ln (e)/(x)], where [.] denotes greatest interger function, the which of the following are ture ?