Home
Class 11
MATHS
" (bi) "(x^(2)-x-2)^(3)...

" (bi) "(x^(2)-x-2)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Simplify: (3x^(3)-2x^(2)-3x-3)-(x^(3)-2x^(2)+3x-4)

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-4x^2 – x + 1 = (x – 2)^3

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-– 4x^2 – x + 1 = (x – 2)^3

a,b are non-zero real numbers such that (a+bi)^(3)=(a-bi)^(3) The value of (b^(2))/(a^(2)) is

((2x^(4)-3x^(3)-3x^(2)+6x-2)/(x^(2)-2))

If a+bi= ((x+i)^(2))/(2x^(2)+1) , prove that a^(2) + b^(2)= ((x^(2) + 1)^(2))/((2x^(2) + 1)^(2))

Simplify: 2x^(2)(x^(3)-x)-3x(x^(4)+2x)-2(x^(4)-3x^(2))

(2x^(2)+8x^(3)+11x-12)-(-5x^(2)-2x-13x^(3)-2)+(-4+2x-3x^(2)-5x^(3))