Home
Class 12
MATHS
" $.19.Prove that "(d)/(dx){2x tan^(-1)x...

" $.19.Prove that "(d)/(dx){2x tan^(-1)x-log(1+x^(2))}=2tan^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx){2x tan^(-1)x-log (1+x^(2))}=2 tan^(-1)x.

(d)/(dx) {Tan ^(-1) ""(2x)/(1- x ^(2))}=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx) {Sin ^(-1) ""(2x)/(1+ x ^(2))}=

d/(dx)[tanh^(-1)((2x)/(1+x^2))]=

(d)/(dx)=(-2x^(2)) =

(d)/(dx) {Sec ^(-1) ""(1)/( 1- 2x ^(2))}=

Find (d)/(dx)cot^(-1)((1-x^(2))/(2x))

Prove that (d)/(dx)[(sin2x+1/(cos^2x)]