Home
Class 11
MATHS
दिखाइए की 6i^(50)+5i^(17)-i^(11)+6i^(28)...

दिखाइए की `6i^(50)+5i^(17)-i^(11)+6i^(28)` एक काल्पनिक संख्या है।

Promotional Banner

Similar Questions

Explore conceptually related problems

6i^(50) + 5i^(33) - 2i^(15) + 6i^(48) = 7i .

Show that 6i^(50)+5i^(17)-i^(11)+6i^(28) is an imaginary number.

Show that 6i^(50)+5i^(17)-i^(11)+6i^(28) is an imaginary number.

Prove that : 6i^54+5i^37-2i^11+6i^68=7i .

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

If 2i^2+6i^3+3i^(16)-6i^(19)+4i^(25)=x+iy , then

Prove that: (i) 1+i^(2)+i^(4)+i^(6)=0 (ii) 1+i^(10)+i^(100)+i^(1000)=2 (iii) i^(104)+i^(109)+i^(114)+i^(119)=0 (iv) 6i^(54)+5i^(37)-2i^(11)+6i^(68)=7i (v) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))=-1

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

Prove 6i ^50+51 ^41−2i ^19+6i ^60=7i