Home
Class 6
MATHS
" 11."5a-1a^(2)-{2a(1-a+4a^(2))-3a(a^(2)...

" 11."5a-1a^(2)-{2a(1-a+4a^(2))-3a(a^(2)-3a-3ix-8a

Promotional Banner

Similar Questions

Explore conceptually related problems

5a - [a^(2) - {2a (1 - a + 4a^(2)) - 3a(a^(2) - 5a -3)}] - 8a

Find : (16a^(2)-2a-3)/(8a^(2)+11a+3) div (3a^(2)-2a-1)/(3a^(2)-11a-4)

7(4a-3)-3a{8-2a(1+2a)}

If a-(1)/(2a)=3 , then the value of (a^(2)+(1)/(4a^(2)))(a^(3)-(1)/(8a^(3))) is

Add the following 5a+2a^2-3a^3+8, -4a^2 +5a^3 -9, -2a+6a^2 -3a^3 , -a+4a^2 -9, 4-a-2a^2 +3a^3

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

3(5a-7)-2(9a-11)=4(8-13-1)

(2a^(2) + a - 1)/(a + 1) + (3a^(2) + 5a + 2)/(3a + 2) + (4 - a^(2))/(a+2) =..

The factors of 8a^3+b^3-6a b+1 are (a) (2a+b-1)(4a^2+b^2+1-3a b-2a) (b) (2a-b+1)(4a^2+b^2-4a b+1-2a+b) (c) (2a+b+1)(4a^2+b^2+1-2a b-b-2a) (d) (2a-1+b)(4a^2+1-4a-b-2a b)