Home
Class 12
MATHS
" If "I(n)=int(0)^(1)(1-x^(3))^(n)dx;(n ...

" If "I_(n)=int_(0)^(1)(1-x^(3))^(n)dx;(n in N)," then "(I_(n))/(l_(n-1))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=