Home
Class 12
MATHS
Let the line 3x+4y=m touches the circle ...

Let the line `3x+4y=m` touches the circle `x^(2)+y^(2)-10x=0` .If the possible values of m are `m_(1)` and `m_(2)` then `((m_(1)+m_(2)))/(10)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all real values of m.

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all reacl values of m.

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all reacl values of m.

The line y =m(x+a) + a/m touch the parabola y^(2)=4a(x+a) for m

The line y=mx+1 touches y^(2)=4x , if m = …………

The circle x^(2)+y^(2)-4x+8y+5=0 touches the line 3x-4y=m then sum of the absolute value of m

If y = 2x + m is a diameter to the circle x^(2) + y^(2) + 3x + 4y - 1 = 0 , then find m

The line (3x)/5 - (2y)/3 + 1 = 0 contains the point (m, 2m-1) , calculate the value of m.