Home
Class 12
MATHS
यदि y = 1+x+(x^(2))/(2!)+(x^(3))/(3!)+...

यदि `y = 1+x+(x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4)+"......."` हो, तो सिद्ध कीजिए कि `(dy)/(dx)=y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= 1+ x + (x^2)/( 2!) + (x^3)/( 3!) + (x^4)/(4!) +…. to oo , show that (dy)/( dx) = y .

If y = 1 + x + (x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+* * *infty show that (dy)/(dx) = y

If y = x- (x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+* * * prove that (1 + x) (dy)/(dx) = 1

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+...oo, then find the value of (dy)/(dx) .

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+...oo, then find the value of (dy)/(dx) .

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

(dy)/(dx)=(2x-3y+4)/(3x+4y-5)

(dy)/(dx)=(3x+y+4)^(2)

x ^ (2) yx ^ (3) (dy) / (dx) = y ^ (4) cos x