Home
Class 10
MATHS
2+(1)/(tan^(2)A)+(1)/(cot^(2)A)=sec^(2)A...

2+(1)/(tan^(2)A)+(1)/(cot^(2)A)=sec^(2)A+cosec^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

cosec^(2)Acot^(2)A-sec^(2)Atan^(2)A-(cot^(2)A-tan^(2))(sec^(2)Acosec^(2)A-1) =

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

sin^(2)A*tan^(2)A+cos^(2)A*cot^(2) A= A) 1 + tan^(2)A + cot^(2) A B) tan^(2)A +cot^(2) A-1 C) 1 + sec^(2)A + tan^(2) A D) 1 + csc^(2)A + cot^(2) A

The value of tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ is equal to: tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ iका मान बराबर है :

Prove the following identities: (1+tan A tan B)^(2)+(tan A-tan B)^(2)=sec^(2)A sec^(2)B(tan A+csc B)^(2)-(cot B-sec A)^(2)=2tan A cot B(csc A+sec B)

Prove that (1+(1)/(tan^(2) theta ))(1+(1)/(cot^(2) theta ))=sec^(2) theta . "cosec"^(2) theta