Home
Class 13
MATHS
" 32.If "I(n)=int(t^(n))/(1+t^(2))dt" th...

" 32.If "I_(n)=int(t^(n))/(1+t^(2))dt" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

int(t^(2)+1)/(t^(4))dt

If I_(n)=int (t^(n))/(1+t^(2))dt, then I_(n-2)=

int(t^(2)+1)/(t^(4)+1)dt

int (1+t^(2))/(1+t^(4))dt =

If I(m,n)=int_(0)^(1)t^(m)(1+t)^(n).dt, then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I_(1) = int_(x)^(1) (1)/(1+t^(2))dt and I_(2)=int_(1)^(1/x) (1)/(1+t^(2))dt for x gt0 , then

If I_(1)=int_(x)^(1)(1)/(1+t^(2)) dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2)) dt "for" x gt0 then,

If I_(1)=int_(x)^(1)(1)/(1+t^(2))dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2))dt for xgt0 , then

If I_(1)=int_(x)^(1)(1)/(1+t^(2))dt and I_(2)=int_(1)^((1)/(2))(1)/(1+t^(2))dt for x>=0 then (A) I_(1)=I_(2)(B)I_(1)>I_(2)(C)I_(1)