Home
Class 7
MATHS
[" Let "],[f(x)],[={[x(sin(1)/(x)+sin(1)...

[" Let "],[f(x)],[={[x(sin(1)/(x)+sin(1)/(x^(2))),x!=0],[0,,x=0]],[" then "lim_(x rarr oo)f(x)=]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = {{:(x (sin 1//x + sin (1//x^(2))),,x ne 0),(0,,x = 0):} Then lim_(x rarr oo) f(x) equals :

lim_(x rarr0)x sin((1)/(x^(2)))

If f(x) = [((sin [x])/([x]), [x] ne 0),(0, [x] = 0)] , then lim_(x rarr 0) f(x) is :

Consider the function f(x)={(max(x,(1)/(x)))/(min(x,(1)/(x))),quad if x!=0 and 1,quad if x=0 then lim_(x rarr0){f(x)}+lim_(x rarr1){f(x)},lim_(x rarr1)[f(x)]=

if f(x)={((1)/(x))sin x,x!=0,0,x=0}f in d lim_(x rarr0)((1)/(x))sin x

lim_(x rarr0)x sin((1)/(x))

Let (x)=|[cos x,2sin x,sin x],[x,x,x],[1,2x,x]|," then "lim_(x rarr0)(f(x))/(x^(2) is equal

" If "f(x)=|[x,sin x,cos x],[x^(2),tan x,-x^(3)],[2x,sin2x,5x]|" ,then "lim_(x rarr0)(f'(x))/(x)=

If f(x)=int((2sin x-sin2x)/(x^(3))dx);x!=0 then lim_(x rarr0)f'(x) is: (A) 0(B)oo(C)-1 (D) 1

Let f(x)=lim_(n rarr oo)(2x^(2n)sin\ 1/x+x)/(1+x^(2n)) then find (a) lim_(x rarr oo) x f(x) (b) lim_(x rarr 1) f(x)