Home
Class 12
MATHS
In triangle ABC if 2sin^(2)C=2+cos2A+cos...

In `triangle ABC` if `2sin^(2)C=2+cos2A+cos2B`, then prove that triangle is right angled.

Promotional Banner

Similar Questions

Explore conceptually related problems

In /_\ABC if sin2A+sin2B = sin2C then prove that the triangle is a right angled triangle

If in a triangle ABC, cos^(2)A + cos^(2)B + cos^(2)C =1 , then show that the triangle is right angled.

If in a ABC,cos^(2)A+cos^(2)B+cos^(2)C=1 prove that the triangle is right angled.

If in a Delta A B C ,cos^2A+cos^2B+cos^2C=1, prove that the triangle is right angled.

In /_\ABC , if sin^2A+sin^2B = sin^2C , then, show that the triangle is a right angled triangle

In any triangle ABC if 2cos B=(a)/(c), then the triangle is(A) Right angled (C) Isosceles (B) Equilateral (D) None of these

If sin A=sin^(2)Band2cos^(2)A=3cos^(2)B then the triangle ABC is right angled (b) obtuse angled (c)isosceles (d) equilateral

Statement-1: In a triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 2 , then one of the angles must be 90 °. Statement-2: In any triangle ABC cos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceless