Home
Class 12
MATHS
Investigate for maxima and minima of the...

Investigate for maxima and minima of the function
f(x)`=int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Investigate for the maxima and minima of the function _(x)f(x)=int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

The function f(x) = int_1^(x) [2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)] dt attains its maximum at x =

The range of the function f(x)=int_(1)^(x)|t|dt , x in[(-1)/(2),(1)/(2)] is

The number of critical points of the function f(x)=int_(0)^(x)e^(t)(t-1)(t-2)(t-3)dt

Then function f(x)=int_(-2)^(x)t(e^(t)-1)(t-2)^(3)(t-3)^(5)dt has a local minima at x=