Home
Class 12
MATHS
Function f(x)=2x^3-9x^2+12 x+29 is monot...

Function `f(x)=2x^3-9x^2+12 x+29` is monotonically decreasing when (a) `x<2` (b) `x >2` (c) `x >3` (d) `1

Promotional Banner

Similar Questions

Explore conceptually related problems

Function f(x)=2x^3-9x^2+12 x+29 is monotonically decreasing when (a) x 2 (c) x >3 (d) 1ltxlt2

Function f(x)=2x^3-9x^2+12 x+29 is monotonically decreasing when (a) x 2 (c) x >3 (d) x in (1,2)

Function f(x)=2x^(3)-9x^(2)+12x+29 is monotonically decreasing when (a) x 2( c) x>3(d)'1

Function f(x)=x^(3)-27x+5 is monotonically increasing when (a) x 3(c)x =3

The function f(x)=cos x - 2ax is monotonically decreasing when-

Function f(x)=x^3-27 x+5 is monotonically increasing when (a) x 3 (c) xlt=-3 (d) |x|geq3

If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then

Find the intervals in which the function f(x) = 2x^3 - 9x^2 + 12 x + 29 is monoonic decreasing.

Function f(x)=cosx-2\ lambda\ x is monotonic decreasing when (a) lambda>1//2 (b) lambda 2

Find the intervals in which the function f(x) = 2x^3 - 9x^2 + 12 x + 29 is monotonic increasing