Home
Class 12
MATHS
Let t(r)=r! and S(n)=sum(r=1)^(n)t(r), (...

Let `t_(r)=r!` and `S_(n)=sum_(r=1)^(n)t_(r), (n>10)` then remainder when `S_(n)` is divided by `24` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the remainder when sum_(r=1)^(n)r! is divided by 15, if n ge5 .

S_(n)=sum_(r=1)^(n)(r)/(1.3.5.7......(2r+1)) then

Let t_(t)=r! and S_(n)=sum_(r=1)^(n)r!,n>4,n in N then (S_(n))/(24)=K+(lambda)/(24),K,lambda in N then lambda can be is

if S_(n)=sum_(r=1)^(n)(1+2+2^(2)......... rterms )/(2^(r)) then S_(n) is equal to

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

If S_(n)=sum_(r =0)^(n)(r^(2)+r+1).r! then which is/are correct

If S_(n)=sum_(r=1)^(n)(1+2+2^(2)+2^(3)+.... rterms )/(2^(r)) then S_(-)n is equal to

If f(n)=sum_(s=1)^(n)sum_(r=s)^(n)C_(r)^(r)C_(s), then f(3)=