Home
Class 12
MATHS
If u=x+y+z,v=x^(2)+y^(2)+z^(2),w=yz+zx+x...

If `u=x+y+z,v=x^(2)+y^(2)+z^(2),w=yz+zx+xy` then show that `grad u , grad v` and `grad w` are coplanar vector.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2) + y^(2) + z^(2) = xy + yz + zx , then the triangle is :

(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

If x+y+z =10 , x^(2) +y^(2) +z^(2) =60 then value of xy+yz +zx is

factorise: det[[x,y,zx^(2),y^(2),z^(2)yz,zx,xy]]

If x^2 + y^2 + z^2 = xy + yz + zx , then the triangle is :

x+y-z=5 and x^(2)+y^(2)+z^(2)=29, find xy-yz-zx

If x+y+z=0,x^2+y^2+z^2=60, find xy + yz + zx