Home
Class 11
MATHS
a^(3)(sin^(3)B-sin^(3)C)+b^(3)(sin^(3)C-...

`a^(3)(sin^(3)B-sin^(3)C)+b^(3)(sin^(3)C-sin^(3)A)+c^(3)(sin^(3)A-sin^(3)B)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin3A=3sin A-4sin^(3)A

(sin(A+3B)+sin(3A+B))/(sin2A+sin2B)=2cos(A+B)

(sin(A+3B)+sin(3A+B))/(sin2A+sin2B)=2cos(A+B)

In any triangle ABC,prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

In any triangle ABC, prove that: a^(3)sin(B-C)+b^(3)sin(C-A)+c^(3)sin(A-B)=0

In a ABC, prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3s in As in Bs in

Prove that,in triangle ABCsin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

sin^(6)A+cos^(6)A+3sin^(2)A cos^(2)A=0 b.1c2d.3

If A+B+C = 2pi , show that sin^(3)A+sin^(3)B + sin^(3)C = 3sin A/2* sin B/2* sin C/2 - sin3A/2*sin 3B/2 * sin3C/2