Home
Class 12
MATHS
Let vec a,vec b,vec c are three non-zero...

Let `vec a,vec b,vec c` are three non-zero vectors and `vec b` is neither perpendicular to `vec a` nor to `vec c` and "`(vec a timesvec b)timesvec c=vec a times(vec b timesvec c)` .Then the angle between `vec a` and `vec c` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

show that (vec B timesvec C)*|vec A times(vec B timesvec C)|=0

If |vec a|+|vec b|=|vec c| and vec a+vec b=vec c, then find the angle between vec a and vec b

The non-zero vectors are vec a,vec b and vec c are related by vec a=8vec b and vec c=-7vec b. Then the angle between vec a and vec c is

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

If vec a, vec b and vec c are non-coplanar vector and vec a times vec c is perpendicular to vec a times(vec b times vec c) ,then the value of [vec a times(vec b times vec c)]times vec c is equal to :

Let vec a, vec b, vec c be three non-zero vectors such that [vec with bvec c] = | vec a || vec b || vec c | then

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

Let vec a,vec b,vec c be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a and vec b. If the between vec a and vec b is pi/6 prove that [vec avec bvec c]^(2)=(1)/(4)|vec a|^(2)|vec b|^(2)

Solve (vec a timesvec a)*vec b

vec b,vec c are unit vectors and |vec a|=7vec a xx(vec b xxvec c)+vec b xx(vec c xxvec a)=(1)/(2)vec a then the angle between vec a and vec a is