Home
Class 12
MATHS
The tangents to x^(2)+y^(2)=a^(2) having...

The tangents to `x^(2)+y^(2)=a^(2)` having inclinations `alpha and beta` intersect at P. If `cot alpha+cot beta=0`, then the locus of P is

Promotional Banner

Similar Questions

Explore conceptually related problems

The tangents to x^(2)+y^(2)=a^(2) having inclinations alpha and beta intersect at P. If cot alpha+cot beta=0, then find the locus of P.

The tangents to x^2+y^2=a^2 having inclinations alpha and beta intersect at Pdot If cotalpha+cotbeta=0 , then find the locus of Pdot

The tangents to x^2+y^2=a^2 having inclinations alpha and beta intersect at Pdot If cotalpha+cotbeta=0 , then find the locus of Pdot

The tangents to x^2+y^2=a^2 having inclinations alpha and beta intersect at Pdot If cotalpha+cotbeta=0 , then find the locus of Pdot

If cot (alpha + beta )=0 , then sin(alpha+2beta ) =

If cot (alpha + beta )=0 , then sin(alpha+2beta ) =

If tan 2alpha = cot 2beta , then sec(alpha + beta) =

If cot ( alpha + beta) = 0 then sin ( alpha + 2 beta) =