Home
Class 11
MATHS
the symmetric difference of A and B is n...

the symmetric difference of A and B is not equal to `(A-B)nn(B-A)` `(A-B)uu(B-A)` `(AuuB)-(AnnB)` `{(AuuB)-A}uu{AnnB}`

Promotional Banner

Similar Questions

Explore conceptually related problems

the symmetric difference of A and B is not equal to (A-B)nn(B-A)(A-B)uu(B-A)(A uu B)-(A nn B){(A uu B)-A}uu{A nn B}

The symmetric difference of sets A and B is equal to (i) (A-B)uu(B-A) (ii) (B-A)uuB (iii) (AuuB)-(AnnB) (iv) (AuuB)nn(AnnB)

For any two sets A and B, (A-B)uu(B-A)=? a. (A-B)uuA b. (B-A)uuB c. (AuuB)-(AnnB) d. (AuuB)nn(AnnB)

Show that : (AuuB)-(AcapB)=(A-B)uu(B-A) .

For any tow sets A and B(A-B)uu(B-A)=(A-B)uu Ab(B-A)uu Bc*(A uu B)-(A nn B)d(A uu B)nn(A nn B)

If A and B are two sets then (A-B)uu(B-A)=(A uu B)-(A nn B)

Prove that (AuuB)-(AnnB) is equal to (A-B)uu(B-A) .

Prove that (AuuB)-(AnnB) is equal to (A-B)uu(B-A) .

Prove that (AuuB)-(AcapB)=(A-B)uu(B-A) .