Home
Class 12
MATHS
Let f(x) be a polynomial satisfying (f(...

Let `f(x) ` be a polynomial satisfying `(f(alpha))^2+(f'(alpha)^2)=0`. Then `lim_(xrarralpha)(f(x))/(f'(x))[(f'(x))/(f(x))]` is equal to (Here `[.]` denotes the greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) = 0 , then find lim_(x rarr alpha) (f(x))/(f'(x))[(f'(x))/(f(x))] , where [.] denotes greatest integer function, is........

Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) = 0 , then find lim_(x rarr alpha) (f(x))/(f'(x))[(f'(x))/(f(x))] , where [.] denotes greatest integer function, is........

Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) = 0 , then find lim_(x rarr alpha) (f(x))/(f'(x))[(f'(x))/(f(x))] , where [.] denotes greatest integer function, is........

If f(x)=[|x|, then int_(0)^(100)f(x)dx is equal to (where I.] denotes the greatest integer function)

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

If f(x)={x+(1)/(2),x =0 then [(lim)_(x rarr0)f(x)]= (where [.] denotes the greatest integer function)

Let f(x) be a polynomial satisfying f(0)=2f'(0)=3 and f'(x)=f(x) then f(4) equals

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals