Home
Class 12
MATHS
Let A and B be two invertible matrices o...

Let A and B be two invertible matrices of order 3×3. If det `(ABA^T)=8` `det (AB^(−1))=8`, then `det (BA^(−1)B ^T)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A and B be two invertible matrices of order 3xx3 . If det. (ABA^(T)) = 8 and det. (AB^(-1)) = 8, then det. (BA^(-1)B^(T)) is equal to

Let A and B be two invertible matrices of order 3xx3 . If det. (ABA^(T)) = 8 and det. (AB^(-1)) = 8, then det. (BA^(-1)B^(T)) is equal to

Let A and B be two invertible matrices of order 3xx3 . If det. (ABA^(T)) = 8 and det. (AB^(-1)) = 8, then det. (BA^(-1)B^(T)) is equal to

Let A and B be two invertible matrices of order 3xx3 . If det. (ABA^(T)) = 8 and det. (AB^(-1)) = 8, then det. (BA^(-1)B^(T)) is equal to

Let A and B be two invertible matrices of order 3 xx 3 . If "det"(ABA^(T)) =8 " and det"(AB^(-1)) =8, " then det"(BA^(-1)B^(T)) is equal to

If A and B are square matrices of order 3 such that det.(A)=-2 and det.(B)=1, then det.(A^(-1)adjB^(-1). adj (2A^(-1)) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to