Home
Class 12
MATHS
If sum(i=1)^9 (xi-5)=9 and sum(i=1)^9 (...

If `sum_(i=1)^9 (x_i-5)=9 and sum_(i=1)^9 (x_i-5)^2=45` then the standard deviation of the 9 items `x_1,x_2,.....,x_9` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(9)(x_(i)-5)=9andsum_(i=1)^(9)(x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),......,x_(9) is

If sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

If sum_(i=1)^9 (x_i - 5) = 9 and sum_(i=1)^9 (x_i - 5)^2 = 45. The standard deviation of the observations x_1, x_2,………,x_9 is ………….

If sum_(i=1)^n (x_i -a) =n and sum_(i=1)^n (x_i - a)^2 =na then the standard deviation of variate x_i

If sum _(i=1) ^(9) (x _(i) - 5) = 9 and sum_(i =1) ^(9) (x _(i) - 5) ^(2) = 45, then the standard deviation of the 9 terms x _(1), x _(2),....,x _(9) is

If sum_(i=1)^(18)(x_(i)-8)=9 and sum_(i=1)^(18)(x_(i)-8)^(2)=45 then the standard deviation of x_(1),x_(2),...,x_(18) is

If sum_(i=1)^(18)(x_(i)-8)=9 and sum_(i=1)^(18)(x_(i)-8)^(2)=45 then find the standard deviation of x_1 , x_2, ....,x_(18)