Home
Class 12
MATHS
If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+...

If `(1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n)`, then prove that
`a_(1)+a_(3)+a_(5)+….+a_(2n-1)=(3^(n)-1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(1)+a_(2)…..+a_(2n)=3^(n)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(2)+a_(4)+……+a_(2n)=(3^(n)+1)/(2)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

(1+x)^(n)=a_(0)+a_(1)x+a_(2)*x^(2)+......+a_(n)x^(n) then prove that

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(3)+a_(6)++,n in N

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(2n)x^(2n), then a_(0)+a_(2)+a_(4)+....+a_(2n) is

If (1+x+x^(2))^(n)=1 +a_(1)x+a_(2)x^(2)+a_(3)x^(3) +……..+a_(2n).x^(2n) then prove that: (i) a_(1)+a_(3)+a_(5)+…..+a_(2n-1) =(3^(n)-1)/(2) (ii) a_(2)+a_(4)+a_(6)+……+a_(2n)=(3^(n)-1)/(2)