Home
Class 12
MATHS
y=(sqrt(3x-5)-(1)/(sqrt(3x-5)))^(5)...

`y=(sqrt(3x-5)-(1)/(sqrt(3x-5)))^(5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x: (sqrt(3x-5)- 1/(sqrt(3x-5)))^5

If P(x)=1/(sqrt(3x+1))[((1+sqrt(3x+1))/5)^(n)-((1-sqrt(3x+1))/5)^(n)] is a 5th degree polynomial, then value of n is

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), then (x+y) equals (a) 2(sqrt(5)+sqrt(3))( b) 2sqrt(15)(c)8 (d) 16

sqrt(5x-4)+sqrt(3x+1)<3

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(2)), then x+y+xy=9(b)5(c)17(d)7, then

If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)),y=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) find the value of (x-y)^(2)

x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) then find x^(2)+y^(2)=?

If x=((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) and y=((sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))), find the value of (x^(2)+y^(2))