Home
Class 12
MATHS
If 1.(0!)+3.(1!)+7.(2!)+13*(3!)+21.(4!)+...

If `1.(0!)+3.(1!)+7.(2!)+13*(3!)+21.(4!)+.......` upto `n` terms `=(4000)4000!,` then the value of `n` is `(i) 4000 (ii) 3999 (iii) 4001` (iv) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If (0!)+3.(1!)+7.(2!)+13*(3!)+21. (4!) +. upto n terms =(4000)4000! ,then the value of n is (i)4000(ii)3999(iii)4001(iv)no!= ofthese

If 1+2+3+……+n=28 , then the value of 1^(2)+2^(2)+3^(2)+………..+n^(2) is (i) 560 (ii) 280 (iii) 140 (iv) None of these

Find: (4-(1)/(n))+(7-(2)/(n))+(10-(3)/(n))... upto n terms

If (3+5+7+... upto n terms )/(5+8+113... upto 10 terms )=7, then find the value of n.

The value of 1+i+i^(2)+... + i^(n) is (i) positive (ii) negative (iii) 0 (iv) cannot be determined

If S_(n) = 1 + 3 + 7 + 13 + 21 + "….." upto n terms, then

If S_(n) = 1 + 3 + 7 + 13 + 21 + "….." upto n terms, then

Find : (4-(1)/(n))+(7-(2)/(n))+(10-(3)/(n))+ upto n terms