Home
Class 14
MATHS
sqrt(?)-11=sqrt(1764)...

`sqrt(?)-11=sqrt(1764)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(?)-11=sqrt(1521)

Simplify the following expressions: (11+sqrt(11))(11-sqrt(11))( ii) (5+sqrt(7))(5-sqrt(7))(sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2))

Simplify the following expressions: (i)(11+sqrt(11))(11-sqrt(11)) (ii) (5+sqrt(7))(5-sqrt(7)) (iii)(sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2)) (iiii)(sqrt(7)-3)(sqrt(7)+3)

Simplify the following expressions: (i) (11+sqrt(11))(11-sqrt(11)) (ii) (5+sqrt(7))(5-sqrt(7)) (iii) (sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2)) (iv) (sqrt(7)-3)(sqrt(7)+3)

If sqrt(17+ xsqrt(11)) = sqrt(11) + sqrt(6) , then value of x^(2) will be:

(sqrt(4356)xxsqrt(?))/(sqrt(6084))=11

Which is the greatest among (sqrt(19)-sqrt(17)),(sqrt(13)-sqrt(11)),(sqrt(7)-sqrt(5)) and (sqrt(5)-sqrt(3))?

Which is the greatest among (sqrt(19)-sqrt(17)),(sqrt(13)-sqrt(11)),(sqrt(7)-sqrt(5)) and (sqrt(5)-sqrt(3))?