Home
Class 11
MATHS
Solve the in equality log(1/4) (2-x)>log...

Solve the in equality `log_(1/4) (2-x)>log_(1/4) (2/(x+1))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

Solve the equation log_(4)(2x^(2)+x+1)-log_(2)(2x-1)=1

Solve: log_(1/3) (x-1) > log_(1/3) 4

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Solve the equation log_(1/3)[2(1/2)^(x)-1]=log_(1/3)[(1/4)^(x)-4]

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

The set ofall the values of x for which log_((1)/(4))(2-x)>log_((1)/(4))((2)/(x+1)) is