Home
Class 12
MATHS
lim(n rarr oo)(0.2)^(log sqrt(5)((1)/(4)...

lim_(n rarr oo)(0.2)^(log sqrt(5)((1)/(4)+(1)/(8)+(1)/(16)+..." to "n" terms "))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo)((1)/(5))^((log_(sqrt5)((1)/(4)+(1)/(8)+(1)/(16)+……."n terms")) equals

underset(n rarr oo) ( "lim")( 0.2)^(logsqrt(5) (1//4+1//8+ 1//16+"............."n" terms" )) is equal to :

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

The value of (0.2) log _(sqrt(5)) ((1)/(4) +( 1)/( 8 ) +(1)/( 16)+"........" to oo ) is :

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =