Home
Class 12
MATHS
Given three vectors U=2hat(i)+3hat(j)-6h...

Given three vectors `U=2hat(i)+3hat(j)-6hat(k), V=6hat(i)+2hat(j)+2hat(k) and W=3hat(i)-6hat(j)-2hat(k)` which of the following hold good for the vectors U, V and W ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Given vectors U=2hat(i)+3hat(j)-6hat(k), V=6hat(i)+2hat(j)+2hat(k) . Find their dot product.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the magnitude of the vector (2hat(i) - 3hat(j) - 6hat(k)) + (-hat(i) + hat(j) + 4hat(k)) .

Show that the following vectors are coplanar : hat(i)-hat(j)+hat(k), 6hat(i)-hat(k) and 4hat(i)+2hat(j)-3hat(k)