Home
Class 10
MATHS
The distance between the points (a cosal...

The distance between the points `(a cosalpha, a sinalpha)` and `(a cosbeta, a sinbeta)` where a> 0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the distance of the line passing through the points (a cos alpha , a sinalpha) and (a cosbeta , a sinbeta) from the origin.

The distance the points (sinalpha, cosalpha,0), (cosalpha, - sin alpha,0) is

If the points A(0,0),B(cosalpha,sinalpha) , and C(cosbeta,sinbeta) are the vertices of a right- angled triangle, then

If the points A(0,0),B(cosalpha,sinalpha) , and C(cosbeta,sinbeta) are the vertices of a right- angled triangle, then

The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle then

The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle then

If A=|(1+cosalpha,1+sinalpha,1),(1+cosbeta,1+sinbeta,1),(1,1,1)|ne0 , then :

(cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2 =

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)