Home
Class 9
MATHS
If (a(b+c-a))/(loga) = (b(c+a-b))/(logb)...

If `(a(b+c-a))/(loga) = (b(c+a-b))/(logb) = (c(a+b-c))/(logc)`, then prove that `b^(c ) . c^(b) = a^(c ).c^(a) = a^(b).b^(a)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (loga)/(b-c) = (logb)/(c-a) = (logc)/(a-b) , then prove that a^(a)b^(b)c^(c)=1 .

If (a+b-c)/(a+ b) =(b+c-a)/(b+c) = (c+a-b)/(c+a) and a+b+cne 0, then prove that a = b = c.

Prove that |b+c a a b c+a b c c a+b |

If a+b+c=0 , then prove that a(c+a)(a+b)=b(a+b)(b+c)=c(a+c)(b+c)=abc

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If (Ina)/((b-c)) =(Inb)/((c-a))=(Inc)/((a-b)) ,Prove that a^(b+c).b^(c+a).c^(a+b)=1

if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

If (a + b + c + d) (a - b - c + d) = (a + b - c - d) (a - b + c - d) , prove that: a : b = c : d .