Home
Class 12
MATHS
सिद्ध कीजिए कि : sin^(-1) x + sin^(-1) y...

सिद्ध कीजिए कि : `sin^(-1) x + sin^(-1) y = sin^(-1) [x sqrt(1 - y^(2)) + y sqrt(1 - x^(२))]`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^-1 x+ sin^-1 y = sin^-1[x 1-y^2 + y 1- x^2]

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi, Prove x sqrt (1-x ^ (2)) + y sqrt (1-y ^ (2) ) + z sqrt (1-z ^ (2)) = 2xyz

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}