Home
Class 11
MATHS
Using the first principle, prove that: d...

Using the first principle, prove that: `d/(dx)(f(x)g(x))=f(x)d/(dx)(g(x))+g(x)d/(dx)(f(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the first principle,prove that (d)/(dx)((1)/(f(x)))=(-f'(x))/([f(x)]^(2))

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

Using first principles,prove that (d)/(dx)[(1)/(f(x))]=-(f'(x))/((f(x))^(2))

Using first principles,prove that (d)/(dx){(1)/(f(x))}=-(f'(x))/({f(x)}^(2))

d/(dx)(int f(x)dx)=

Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({f(x)}^2)

d/(dx)intf(x)dx=f'(x) .

Using first principles, prove that (d)/( dx) ((1)/( f(x))) = (-f' (x))/( {f (x) }^2) .

If f(x)a n dg(x) are two differentiable functions, show that f(x)g(x) is also differentiable such that d/(dx)[f(x)g(x)]=f(x)d/(dx){g(x)}+g(x)d/(dx){f(x)}