Home
Class 12
MATHS
If A, B, C are the angles of a triangle ...

If A, B, C are the angles of a triangle then `sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If A B C are the angles of a triangle then sin ^(2) A+sin ^(2) B+sin ^(2) C-2 cos A cos B cos C

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If A, B, C are the angles of a triangle, prove that sin2A+sin2B+sin2C=4sinAsinBsinC

If A, B, C are angles of a triangle, then S. T sin 2A -sin 2B + sin 2C=4 CosA sin B CosC