Home
Class 10
MATHS
If tan 35^(@)=x, then prove that (tan ...

If ` tan 35^(@)=x`, then prove that `(tan 145^(@)- tan 125^(@))/(1+tan145^(@) tan 125^(@))=(1-x^(2))/(2x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan 35^(@) = k , then the value of ( tan 145^(@) - tan 125^(@))/(1+ tan 145^(@) tan 125^(@)) =

If tan 35^(@) = k , then the value of ( tan 145^(@) - tan 125^(@))/(1+ tan 145^(@) tan 125^(@)) =

tan 100^(@) + tan 125^(@) + tan 100^(@) tan 125^(@) =

Prove that, tan 35^(@) + tan 10^(@) + tan35^(@) tan 10^(@) = 1

tan(100^(@))+tan(125^(@))+tan(100^(@))tan(125^(@))=

tan(100^(@))+tan(125^(@))+tan(100^(@))tan(125^(@))=

" If " Tan35^(0)=k Then the value of " Tan145^(0)-Tan125^(@))/(1+Tan145^(@)Tan125^(@))

If Tan35^(0)=k , Then the value of (Tan145^(0)-Tan125^(0))/(1+Tan145^(0)Tan125^(0))= (A) (2k)/(1-k^(2)), (B) (2k)/(1+k^(2)) (C) (1-k^(2))/(2k), (D) (1-k^(2))/(1+k^(2))

Find the value of tan 100^(@)+tan125^(@)+tan 100^(@). Tan 125^(@) .