Home
Class 12
MATHS
" (ii) "tan^(-1)(2a-b)/(b sqrt(3))+tan^(...

" (ii) "tan^(-1)(2a-b)/(b sqrt(3))+tan^(-1)(2b-a)/(a sqrt(3))=(pi)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following "tan"^(-1)(2a-b)/(bsqrt(3))+"tan"^(-1)(2b-a)/(asqrt(3))=pi/(3)

Prove that : tan^(-1)( (2a-b)/(bsqrt(3))) +tan^(-1)((2b-a)/(asqrt(3))) = pi/3

Prove that : tan^(-1)( (2a-b)/(bsqrt(3))) +tan^(-1)((2b-a)/(asqrt(3))) = pi/3

Prove the "tan"^(-1)(2a-b)/(bsqrt3) +"tan"^(-1) (2b-a)/(asqrt3) =pi/3

A normal to parabola, whose inclination is 30^(@) , cuts it again at an angle of (a) tan^(-1)((sqrt(3))/(2)) (b) tan^(-1)((2)/(sqrt(3))) (c) tan^(-1)(2sqrt(3)) (d) tan^(-1)((1)/(2sqrt(3)))

A normal to parabola, whose inclination is 30^(@) , cuts it again at an angle of (a) tan^(-1)((sqrt(3))/(2)) (b) tan^(-1)((2)/(sqrt(3))) (c) tan^(-1)(2sqrt(3)) (d) tan^(-1)((1)/(2sqrt(3)))

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

Evaluate: tan^(- 1)(-1/(sqrt(3)))+tan^(- 1)(-sqrt(3))+tan^(- 1)(sin(-pi/2))

a=sin^(-1)(-(sqrt(2))/(2))+cos^(-1)(-(1)/(2)) and b=tan^(-1)(-sqrt(3))-cot^(-1)(-(1)/(sqrt(3))) ,then