Home
Class 10
MATHS
If sec theta+tan theta=a then prove that...

If `sec theta+tan theta=a` then prove that `sin theta=(a^2-1)/(a^2+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec theta+tan theta = x , prove that sin theta= (x^2-1)/(x^2+1)

If sec theta+tan theta=p, prove that sin theta=(p^(2)-1)/(p^(2)+1)

tan theta+sec theta=x show that 2tan theta=x-(1)/(x),2sec theta=x+(1)/(x) hence prove that sin theta=(x^(2)-1)/(x^(2)+1)

Prove: sec theta + tan theta = 1/(sec theta - tan theta)

Prove that sec theta+tan theta=(cos theta)/(1-sin theta)

Prove that sec theta + tan theta = (cos theta)/(1-sin theta)

prove that 1+tan theta tan2 theta=sec2 theta

Prove each of the following identities : (i) (sec theta -1)/(sec theta +1) =(sin^(2) theta)/((1+ cos theta)^(2) ) (ii) (sec theta - tan theta)/(sec theta + tan theta) = (cos^(2) theta)/((1+ sintheta)^(2))

Prove that: (sec theta + tan theta -1)/(tan theta - sec theta +1) = (cos theta)/(1- sin theta)

Prove that (sin theta -cos theta+1 )/( sin theta + cos theta -1) =(1)/( sec theta -tan theta ) [use the identity sec ^(2) theta =1 +tan ^(2) theta ]